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ABSTRACT
We discuss several semiclassical Gaussian wave packet approaches
with emphasis on one that is not very well-known, that is, the off-
center guiding approach. Off-center guiding of (thawed) Gaussian
wave packets uses the same information as other Gaussian
propagation schemes, that is, the full van Vleck determinant and
multiple trajectories. It retains the well-known caustic smoothing
property of Gaussians. The off-center guiding of Gaussians can
handle hard chaos and other highly nonlinear situations, where
the van Vleck propagator, for example, has over 30 000 separate
branches.

1. Introduction
Quantum dynamics is undergoing a rapid development,
which parallels earlier progress in electronic structure
theory. The latter can be thought of as the necessary
“static” precursor to the nuclear dynamics problem oc-
curring on and between Born-Oppenheimer potential
energy surfaces: this is the essence of chemistry and
chemical reactivity. (“On the fly” methods, which do the
quantum dynamics in conjunction with electronic struc-
ture, compute structure information only where and when
it is needed; these are very powerful and are rapidly
gaining favor.1) The issue of how to deal with the
potentially huge basis sets required to follow a quantum
time developing wave function of say 6 or 60 or 600
degrees of freedom is the subject of many approximate
methods, but one of the leading ideas is to use the
convenient and physically motivated Gaussian wave pack-
ets as a basis for description. This brings mathematical
convenience as well as semiclassical motivation and
approximation into the mix, since Gaussian wave packets
are venerable workhorses of heavy particle quantum
dynamics, dating back to Schrödinger’s use of them for
the harmonic oscillator, where he noticed they behaved
classically.

Semiclassical Gaussian wave packet methods are now
seeing widespread use in a wide variety of applications
to chemical systems. The range of problems that they
have addressed is very large and growing. Hybrid
methods that are partly semiclassical and partly ab initio
are also receiving much attention. These methods go
beyond merely solving the Schrödinger equation for a
physical system by providing intuition and mechanism
behind the results. It is impossible to do justice to all the

significant ideas and papers without writing a large review
article.

This Account has the more modest goal of reviewing
purely semiclassical guided wave packet methods and
discussing one approach that has not received the atten-
tion it might deserve in chemical applications. This is the
method of “off-center guiding” of wave packets,2-5 which
may be thought of as a significant improvement on the
older “thawed Gaussian approximation” or TGA.6 It is
more informal and much simpler to implement than the
full stationary phase approach to the coherent state
semiclassical representation (CSSR).7,8

A Gaussian wave packet is associated with a classical
point in phase space through its expectation value with
the position and momentum operators. It is useful to
define a few things about Gaussians. A general Gaussian
wave packet in one dimension can be written as

where Rt/2 ≡ (at + ibt) is a complex number with posi-
tive real part at and imaginary part bt of either sign.
The Gaussian has average position qt ) ∫ψt

/(q)qψt(q)
dq ) ∫|ψt(q)|2q dq and average momentum pt )
∫ψt

/(q)(-ip(∂/∂q)ψt(q) dq.
A little “anatomy lesson” is worthwhile. In Figure 1, we

show a picture of a normalized general Gaussian in
coordinate space and the aspects that each parameter in
the Gaussian controls. The parameters at, bt, qt, pt, and φt

are all real. Since the Gaussian wave packet has uncer-
tainty in position and momentum, the classical analogy
has to be extended to a distribution of trajectories with
collectively similar uncertainties in position and momen-
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FIGURE 1. Anatomy of a Gaussian. A Gaussian wave packet is
displayed in coordinate space with the role of the parameters at,
bt, qt, pt, and φt shown. Within the TGA, the parameters are all
controlled by classical trajectories with qt,pt following the classical
trajectory leading from q0,p0 at time t ) 0. The phase φt is the
classical action.
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tum. The best way of doing this is through the Wigner
transform,

The Wigner function for the Gaussian eq 1 is obtained by
carrying out the integral eq 2, which results in

Phase space representations and pictures are the best way
to understand the issues facing wave packet propagation.
We will exploit the intuition suggested by them below.

2. Thawed Gaussians
The original TGA idea is based on the notion that, initially,
the expectation values of the position and momentum of
a Gaussian obey the classical equations of motion (Ehren-
fest’s theorem). This correspondence is exact for all times
for a quadratic potential but still true at short times for
an anharmonic potential. The TGA idea is to “cradle” the
wave packet in a local harmonic expansion surrounding
the center of the wave packet; this notion is clear from
Figure 2. This leads to an effective time-dependent
quadratic Hamiltonian as shown in Figure 2. If a Gaussian
is propagated with a different initial q0,p0, then a different
time-dependent effective Hamiltonian results, one that is
optimized for the new Gaussian. Many more details about
Gaussian wave packet propagation may be found in refs
9-11.

The difficulties with the TGA increase with time; initial
Gaussian wave packets do not remain Gaussian in anhar-
monic potentials. The problem arises from a global
linearization of the classical dynamics around the guiding
center of the wave packet. It is useful to make phase space
pictures to see what happens when the dynamics is
nonlinear. We take an ellipse (here a circle) to represent
the initial Gaussian wave packet; the parameters of the
ellipse are taken from the uncertainties of the inital
Gaussian. Think of the ellipse as filled with δ function
classical trajectories, and propagate them all in time. A
typical result is shown in Figure 3.

The TGA uses the center of the initial wave packet as
initial conditions for the guiding trajectory and linearizes
around that. The TGA approximation to the wave packet
dynamics is correct in the “core” of the wave packet, but
fails badly in other regions of phase space. The overlap
with the final Gaussian near the top of the picture would
be quite wrong. Note that the Gaussian propagated under

the linear dynamics of the TGA remains Gaussian; this
means that it’s phase space plot must be an ellipse, as
shown in gray in Figure 3B.

We should not have expected too much from the TGA;
it propagates an entire, complete wave function with one
trajectory (and its immediate environs, which is the
information in the stability matrix and van Vleck deter-
minant; see the next section). Nonetheless, the TGA has
done remarkable service, in particular in deriving analyti-
cal approximations to such things as absorption and
Raman spectroscopy, where many quantities depend only
on very short time dynamics.12

3. Beyond the TGA
The beginning of a “proper” and less heuristic theory of
semiclassical wave packet propagation is to ask: what is
the stationary phase limit of the Feynman propagator? The
answer is the van Vleck-Gutzwiller semiclassical propaga-
tor, GVVG(q,q′;t):

The sum over j is over all the trajectories connecting q to
q′ in time t; d is the number of degrees of freedom. The
prefactor determinant is in fact the square root of the
classical probability of starting at q′ at time t ) 0 and
ending at q at time t. This determinant involves the

FIGURE 2. The TGA is derived by locally expanding the potential
quadratically around the moving center of the Gaussian.

FIGURE 3. (A) An initially Gaussian wave packet, represented by
the phase space circle on the left, is propagated under a nonlinear
Hamiltonian with the resulting nonlinearly distorted phase space
distribution shown on the right. Also shown is the overlap of the
propagated distribution with a second Gaussian. (B) TGA approxima-
tion shown in gray approximates the situation in the “core” of the
propagated wave packet but does a very poor job in representing
the overlap of the true distorted state with the Gaussian depicted
near the top of the picture.
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stability matrix and thus the linearized dynamics in the
vicinity of each trajectory connecting q with q′ in time t:
we can write, in one dimension,

The phase is determined by the classical action Sj(q,q′;t)
and the Maslov index νj (see below). The classical action
is the time integral of the Lagrangian, L

along the jth classical path. H is the classical Hamiltonian,
which is presumed to be the classical limit of Ĥ. Equation
4 was originally written down by van Vleck in 1928 without
the summation or index ν.13

We note in passing that one can derive the TGA under
the linearizing of the dynamics in the following way:
quadratically expand the action S(q, q′, t) around q′ ) q0

and q ) qt, where qt ) qt(q0,p0) with (q0,p0) and (qt,pt) real.
We will not carry this out here, but the result is the TGA
when this linearized propagator is applied to the initial
Gaussain centered at (q0,p0). This has all the problems
already mentioned and is clearly more primitive than
keeping the full nonlinear VVG propagator; it is also much
less work.

The TGA is not the full semiclassical result. Suppose
we do want to semiclassically propagate the initial wave
function, ψ0(q′):

using the VVG propagator. There are two alternatives,
namely, do the integral above by stationary phase or
numerically. The latter is a “uniform” approximation; the
former is a “primitive” semiclassical result. We consider
both approaches, starting with the uniform or numerical
approach. To carry this out, we need to determine Sj(q,q′;t)
and do the integration over q,q′ in eq 4 numerically. One
way of doing this, called cellular dynamics (CD), was
introduced in ref 14; later, Miller correctly pointed out15

that cellular dynamics had an initial value representation
(IVR) as its modus operandi.16 What was new about cellular
dynamics however was the direct calculation (by whatever
means) of the VVG time-dependent propagator applied
to smooth wave functions. For some reason, despite the
prime importance of the VVG propagator, no one had
previously evaluated it’s performance as a semiclassical
tool, except to note that the propagator itself is badly
singular.17 This is not to say that the result is badly singular
when the VVG propagator is applied to smooth wave
functions; indeed it is not. The CD-IVR approach makes
the integral easier by regularizing the integrand and
eliminating “root searches”. The end result was that even
when the dynamics is strongly nonlinear, the VVG propa-
gator acting on a smooth wave function may be remark-
ably accurate.14 Cellular dynamics was used in refs 18 and
19 to successfully treat systems with mixed chaotic and

integrable dynamics. Figure 4 shows a successful imple-
mentation of cellular dynamics to the highly nonlinear
long time dynamics of a Morse oscillator from ref 14.

The CD method is not specifically a guided wave packet
theory, although it can be used to propagate wave packets.
It is an example of what is called a “uniform” approxima-
tion to semiclassical amplitudes, in which an explicit
integration is introduced that is not itself Gaussian. If the
integration is done instead by stationary phase or steepest
descent then the result is a “primitive” semiclassical
approximation.20 (If the integrand is Gaussian, then the
dynamics is linear and stationary phase is exact). This
would typically be a less accurate approach, although the
advantages of a coherent state (i.e., Gaussian) primitive
representation may be retained at the cost of complex
“roots” or stationary phase points. We discuss this next.

3.1. Coherent State Semiclassical Representation. The
CD method implemented the first of two approaches that
we mentioned for the application of the VVG propagator
to wave packets, that is, a uniform and numerical ap-
proach. The stationary phase, fully primitive semiclassical
approach is discussed next, leading to the coherent state
semiclassical representation.

Suppose we label the phase space location γt ) (pt,qt),
and the Gaussian wave packet (coherent state) ψt(q) in
eq 1 as ψt(q) ) 〈q|γt〉, where we have suppressed the
spread parameter Rt ) at + ibt in the notation. We then
can investigate the VVG propagation of |γ0〉 followed by
its projection onto |γf〉:

|∂
2Sj(q,q′;t)

∂q∂q′ |1/2 ) |∂p
∂q′|

1/2 (5)

Sj(q,q′;t) ) ∫0

t
dt′ L ) ∫0

t
dt′ {p(t′)‚q3 (t′) -

H(p(t′),q′(t′))} (6)

ψt(q) ) ∫dq′ GVVG(q,q′,t)ψ0(q′) (7)

FIGURE 4. The initial Gaussian wave packet in the Morse potential
at the top corresponds to a vertical manifold of trajectories, since it
is very narrow. This wave packet is propagated according to the
VVG semiclassical cellular dynamics and exact fast Fourier trans-
form. There is almost no difference, even after the classical manifold
(initially a vertical line, later escaping to the right and twisting) begins
to have many branches. Both the semiclassical (dashed) and the
exact quantum results for the last frame are shown enlarged at the
bottom.

〈γf|e-iHt/p|γ0〉 ≈ ∫∫〈γf|q〉GVVG(q,q′,t)〈q′|γ0〉 dq dq′ (8)
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with GVVG(q,q′,t) given by eq 4, and the integrals are done
by stationary phase. Carrying out the stationary phase
gives the simultaneous equations for the root solutions q
and q′:

where

These equations, discussed first by Klauder8 and later by
Weissman,7 have an interesting interpretation, as dis-
cussed in the first application of this approach to non-
trivial potential problems.21,22 We recast eqs 9 in the form

where qjt is the stationary phase value of q, and qj0 is the
stationary phase value of q′. Equations 11 have the
interpretation of the permitted complexification of the
Gaussian parameters (pt,qt) and (p0,q0), which leave the
respective Gaussians untouched, except for an overall
factor. That is, we may take q0 to an arbitrary real or
complex value qj0, and if p0 is adjusted to pj0 according to
eq 11, the Gaussian ψ0(q) stays the same. This freedom
permits a root search, which may be viewed as finding
an (complex) initial classical guiding trajectory with a
“center” (pj0,qj0), becoming (pjt,qjt) under real time evolution.
The complex root has been found if (pj t,qjt) is equivalent
in the sense of eq 11 to the real values (pf,qf) of the final
coherent state. The set of parameters (pj0,qj0) that satisfy,
for example, the first eq 11 is called the equivalent initial
complex manifold. The root search is then to find trajec-
tories connecting the initial and final equivalent mani-
folds. This is subject to the usual difficulties of root
searches and indeed of Stokes phenomena, as discussed
in refs 21 and 22. Note that the essence of this approach
is to tailor a propagator to the given initial and final states;
there are many propagators in a certain sense. We call
this approach the coherent state semiclassical approach,
CSSA. It is easy to show that the initial conditions can
become complex even in the case of linear dynamics, as
in the harmonic oscillator potential. However in this case
one gets the same (exact) result whether or not the
complex guiding center is used.

3.2. Nearly Real Method. The notion that the important
contributions to the primitive coherent state semiclassical
amplitudes are classical trajectories that are nearly real
was developed in ref 23. This works remarkably well and
considerably simplifies implementation of the primitive
coherent state approach. The approach was further re-
fined, tested, and given a formal basis in terms of similarity
transformed dynamics in ref 24. The procedure is to

choose several initial conditions close to the classical
center of the initial coherent state and propagate them
forward in time using the classical Hamiltonian; then for
each time that one of the above trajectories comes near
the final point, perform a search to find the nearest
solution to the boundary conditions, eq 11. Next, for each
solution, one takes small steps forward and backward in
time to trace out a branch of solutions. For each new time,
the solution at the previous time is used as a guess for
the nearly real solution. Finally, one adds all the contribu-
tions from the different branches.

3.3. Frozen Gaussians and Herman-Kluk. The frozen
Gaussian approximation25 (FGA) was introduced as an
attempt to simplify the numerics of the TGA and at the
same time take nonlinearities into account. The numerical
simplification was achieved by throwing out the van Vleck
determinant and individual wave packet spreading, which
costs some effort to compute, especially in many dimen-
sions. This was patched up by expanding the initial
Gaussian in terms of many other Gaussians, each of a
different initial position and momentum. These are then
propagated according to their different initial centers by
the FGA, and the resulting sum of all the frozen Gaussians
is taken to be the wave function. Nonlinearities are thus
included, as different guiding trajectories follow the cor-
rect dynamics. The method is somewhat ad hoc and surely
not accurate for long times. Nonetheless, it is reasonably
accurate at short times and has the advantage that it is
easy to implement for many body systems. It has been
used, for example, to study electronic transitions in
solution.26,27

Herman and Kluk28 (HK) found a new way to exploit
frozen Gaussians, albeit at the expense of reintroducing
elements of the van Vleck determinant. There has been
some controversy surrounding the derivation, validity, and
use16,29-31 of the HK, but it remains a very popular choice.
It is essentially an “outside the box” semiclassical method,
approaching the VVG as p f 0. This is an example of a
very promising general plan: why not invent methods that
agree with VVG in the limit (as they must, because VVG
is correct in the limit p f 0) but are something different
for finite p? Kay has investigated some of these issues and
others surrounding IVR methods in an influential theo-
retical and numerical study.31,32 The interested reader is
referred to these papers, and also refs 16, 29, and 30 for
more details.

Manolopoulos developed a hybrid of CD and HK in an
interesting study of Franck-Condon spectra.33 Very so-
phisticated, chemically relevant, and remarkable “on the
fly” wave packet approaches to multisurface nonadiabatic
dynamics, coordinated with electronic structure calcula-
tions, have been made by Martinez and co-workers.1

3.4. Off-Center Guiding. 3.4.1. Background. We now
are ready to discuss the rather different assumptions
behind off-center guiding of Gaussian wave packets. The
first thing to mention is that all the guided wave packet
approaches mentioned so far have propagated Gaussians
according to their center in phase space. As mentioned,
even the CSSA adheres to this by complexifying the center

-R0(q - q0) - ip0 + ipt(q,q′,t) ) 0

-Rf(q - qf) + ipf -ipt(q,q′,t) ) 0 (9)

pt(q,q′,t) )
∂S(q,q′,t)

∂q

p0(q,q′,t) ) -
∂S(q,q′,t)

∂q
(10)

R0qj0 + ipj0 ) R0q0 + ip0

Rfqjt - ipj t ) Rfqt - ipt (11)
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without changing the Gaussian. The complex center refers
back to the original, real center through eq 11.

Like the CSSA, off-center guiding tailors propagators
to the amplitude being computed, but unlike the CSSA
or NR-CSSA it uses purely real trajectories not related to
the center of the wave packet around which to linearize
the dynamics. The off-center approach has already achieved
success under some of the most extreme circumstances.
We discuss the applications the method has seen and the
prospects for future work.

3.4.2. Off-Center Method. The basic idea motivating
off-center guiding can be seen in Figure 5.2,3 The center-
guided TGA linearization of the whole wave packet is a
very poor approximation in the tails of the phase space
distribution when nonlinear evolution has become im-
portant within the initial zone of size h surrounding the
guiding trajectory. However the dynamics is still locally
linear over domains smaller than h. Taking advantage of
this permits a much better approximation to overlaps,
such as that shown in Figure 5 between the distorted
propagated state and the Gaussian used for final projec-
tion (black circle upper right). If the off-center trajectory
marked with “+” is used as a guide of the initial wave
packet (black circle to the left), it becomes the gray
Gaussian state shown. This is actually a good approxima-
tion to the full nonlinear propagation of the Gaussian in
the zone that matters, near the final Gaussian.

The question immediately arises as to how to choose
the off-center trajectory. We give here a heuristic deriva-
tion giving the best choice of guiding trajectories, which
are taken to be purely real. We already know that a
stationary phase attack on the problem starting with the
VVG propagator results in complex trajectories and the
CSSA approach, so this is not the approach we want here.
Instead, we first construct the classical Gaussian phase
space density corresponding to the initial and final
Gaussian wave packets, for example,

with a similar expression for Ff(p,q). (We assume for
simplicity that the R parameter is real and the same for
both initial and final state). Each initial trajectory δ(q′ -

q)δ(p′ - p) is propagated, considering (p′,q′) as an initial
condition, becoming δ(qt(p′,q′) - q)δ(pt(p′,q′) - p). Then
the initial distribution Fi(p,q) ≈ exp[-R(q - qi)2 -
1/R(p - pi)2] becomes

and the overlap with the final Gaussian density becomes

We next evaluate this integral by steepest descent,
which here amounts to finding the stationary points of
the exponent and expanding quadratically around them,
followed by doing the resulting Gaussian integral exactly.
Let (pt+,qt+) be such a stationary point. It corresponds a
local maximum in the product of the two densities, and
is the choice for the end point of the guiding trajectory.
Following it back in time to t ) 0, the point (p0+,q0+) is
the guiding center around which the wave packet is
propagated to get an approximation to that local contri-
bution to the overlap.

The main point of this derivation is that using the
trajectory (p0+,q0+) as a guiding center for the OC-TGA
gives a quantum amplitude with a magnitude that is the
square root of the classical overlap as determined by
steepest descent. This is easily seen by noting that
quantum overlaps and Wigner phase space overlaps are
identical for Gaussians and that steepest descent is
equivalent to a quadratic expansion of the exponent. Since
the classical procedure seems intuitively optimal for
computing the overlap by steepest descent and the
guiding center initial condition (p0+,q0+) corresponds to
it in the usual sense of the square root of the classical
probability, we have found an optimal trajectory for the
OC-TGA.

The approach is quite different than CSSA or the
“nearly real” approach, since these refer back to the center
of the initial Gaussian, whereas in the off-center guiding,
we have abandoned the original center. However off-
center guiding shares the property that the propagator is
optimized for the final state in question.

3.4.3. Numerical Applications. Off-center guiding was
first used in connection with a completely chaotic stadium
billiard problem.2,3 (It was further developed by Tomsovic
and co-workers, who applied it to the highly singular and
nonlinear Coulomb problem.4,5) The autocorrelation func-
tion of the wave packet launched in the stadium billiard,
shown in Figure 6, was computed. The structure of phase
space (Figure 7) is typical of chaotic systems, with a so-
called “homoclinic tangle” surrounding the periodic orbit,
which is at the center of the chosen wave packet. Ho-
moclinic orbits are trajectories that start near the periodic
orbit (and in fact asymptotically approach it going back-
ward in time), then leave its vicinity, only to return and

FIGURE 5. Off-center TGA approximation shown in gray, optimized
for the overlap with the final Gaussian shown as a circle on the
upper right. The trajectory at the center of the “+” was used to
guide the Gaussian; it traveled to the “+” shown in the gray
propagated state. It is a real trajectory.

Fi(p,q) ≈ exp[-R(q - qi)
2 - 1

R
(p - pi)

2] (12)

Ft(p,q) ≈ ∫∫ dp′ dq′ exp[-R(q′ - qi)
2 -

1
R

(p′ - pi)
2]δ(qt(p′,q′) - q)δ(pt(p′,q′) - p) (13)

O(t) ≈ ∫∫ dp′ dq′ exp[-R(q′ - qi)
2 - 1

R
(p′ - pi)

2]
exp[-R(qt(p′,q′) - qf)

2 - 1
R

(pt(p′,q′) - pf)
2] (14)
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asymptotically approach it again. That central periodic
orbit is special only in that it never leaves; it’s contribution
is added to the homoclinic ones. Each homoclinic orbit
may be justified as a guiding center, along the lines just
given. A single homoclinic orbit and the amplitude it
contributes are seen in Figure 8. The exact quantum and
semiclassical correlation functions are shown in Figure
9. The total time elapsed was enough to require about
30 000 homoclinic contributions, at the end of the run

near t ) 6, which corresponds to about four periods of
the central periodic orbit.

There are several remarkable aspects of this calculation.
Perhaps the most surprising is that the semiclassical result,
no matter how it is computed, is so accurate or even close
to the right result for such long times in a strongly chaotic
system. After many years of controversy about whether
the correspondence principle was applicable to chaotic
systems, spurred, for example, by questions about the
convergence of the Gutzwiller trace formula,34 in the
energy domain, this direct construction of the quantum
time-dependent amplitudes from the chaotic dynamics
represented a new watershed. It was also possible to
construct a nearly resolved quantum energy spectrum
from the Fourier transform of the quantum autocorrela-
tion function.2,3 Tomsovic and co-workers applied off-
center propagation to integrable nonlinear dynamics in
the Coulomb potential.4,5 The method of choosing off-
center reference trajectories was simplified, as shown in
Figure 10. Oddly, this system is a more severe test of the
approach than the chaotic ones, since the stretching is
not so strong as to make the overlap regions nearly linear.
Nonetheless, the results are extremely good, as shown in
Figure 11.

3.5. Comparison of Approaches. Suppose we at-
tempted the stadium chaos calculation with the HK
method. There would have to be five or so frozen
Gaussians in each homoclinic branch near the initial state.
If this was done by starting with enough trajectories
initially, one would require at least a million frozen

FIGURE 6. Schematic of the initial Gaussian wave packet |φ〉, which
when propagated in the stadium billiard shown gives the autocor-
relation function 〈φ|φ(t)〉 of Figure 9. The wave packet is initiated in
the middle of the billiard with momentum in the direction of the arrow.

FIGURE 7. Nonlinear homoclinic tangle developing for a generic
chaotic system in the vicinity of a periodic orbit. The autocorrelation
function can be represented as a sum of discrete overlaps with
each of the approximately horizontal manifolds cutting through the
initial Gaussian shown as a grayscale density; each of those
contributions is in turn computed by the overlap with a thin Gaussian
(an example is shown only at the bottom for clarity) obtained by the
off-center propagation of the initial wave packet. For example, the
contribution marked with an asterisk is computed from an off-center
trajectory marked with a “+”.

FIGURE 8. A homoclinic orbit associated with the horizontal bounce
unstable periodic orbit and the amplitude it contributes to the total
autocorrelation function shown in Figure 9 are shown. From ref 3.

FIGURE 9. Autocorrelation function 〈φ|φ(t)〉 for the stadium wave
packet shown in Figure 6: quantum result, solid line; semiclassical,
dashed line.

FIGURE 10. Example of nonlinear dynamics and choice of guiding
reference trajectories from ref 4. The ellipse is the region that is
mapped into the gray area under the dynamics; the inner lobe is on
its third return from the Coulomb singularity; the outer lobe is on its
second return. The white dotted line within the black ellipse is
mapped into the dotted lines within the gray zone. The two
intersections are chosen as off-center guiding trajectories.
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Gaussians at each time, perhaps 10-50 times this alto-
gether, in the regime where we required 30 000 guided
Gaussians. Of course, one could begin to take the structure
of phase space into account and drastically reduce this
number. However, one of the advantages of the HK
method would be lost, that is, it’s “set it and forget it”
mode of running a single large set of trajectories and not
worrying too much about where they go.

Figure 13 illustrates some of the aspects of the HK and
OC-TGA approaches.

The CSSA, NR-CSSA, and OC-TGA approaches all tailor
their propagators to the initial and final state pair. They
do not provide a sum over wave packets, which is
collectively the whole wave function. However, this dif-
ference is not as big as it might seem at first. If one wants
to know the wave function at position qb, then only those
frozen Gaussians with centers near qb contribute. One must
make sure there are enough frozen Gaussians present to
overlap each other in phase space, not just in coordinate
space.

It is reasonable to expect that the NR-CSSA would do
just as well as the OC-TGA in the strong chaos limit. In
fact, it is possible to show that the “nearly real” contribu-
tions are very nearly real and almost equivalent to the OC-
TGA, in the following way. Consider a homoclinic recur-
rence branch as shown in Figure 12. Without loss of

generality, we take the momentum axis as the stable axis
of motion, along which trajectories are approaching each
other exponentially, and the position axis as the unstable
axis. The initial Gaussian we take at q ) p ) 0. The
homoclinic trajectory shown arises from the point (q ) ε,
0); it guides a wave packet with real off-center trajectories
to a recurrence at (q ) 0, -µ) along the stable axis.
Expanding

where (q0,p0) are the initial position and momentum of
the guiding trajectory. The alignment of the manifolds and
their stabilities dictates however,

Now let us inquire what the CSSA complex valued
solution might be, corresponding to this branch of the
dynamics. Using eq 11, we set qj0 ) ε, then pj0 ) iRε, that
is, the initial momentum is pure imaginary. However, eq

FIGURE 11. Autocorrelation function |c(t)| for the wave packet
shown in Figure 10 for the first 22 Kepler periods of motion. The
exact quantum result is dashed. From ref 4.

FIGURE 12. The initial Gaussian (gray circle) and one of many
homoclinic recurrences; the trajectory at q ) ε, p ) 0 returns to
the vicinity at q ) 0, p ) -µ, bringing with it a stretched piece of
the initial wave packet shown as a dashed line. The q-axis is taken
to be the unstable manifold.

FIGURE 13. (A) The FGA and HK approaches expand the initial
Gaussian (grey circle) in terms of others (open circles) typically as
shown. The distorted gray area is the time evolution of the gray
circle. The frozen Gaussians remain circular, their centers attracting
along the stable axis of motion and expanding along the unstable
axis. (B) The OC-TGA approximation typically uses the unstable axis
and expands along that; expansion in the perpendicular direction is
redundant. The pluses mark the off-center guiding trajectories. The
TGA guided wave packets extend along the unstable axis; there
are fewer of them to begin with and the growth in the number
needed is much slower due to the extrapolation along the unstable
direction. Two of the guided Gaussians are shown, one of which is
the TGA center-guided Gaussian. Each Gaussian is used only when
it is optimal in a given region; they are not added together.

qf ) 0 + ∂q
∂q0

(q0 - ε) + ∂q
∂p0

(p0 - 0) + ...

pf ) -µ + ∂p
∂q0

(q0 - ε) + ∂p
∂p0

(p0 - 0) + ... (15)

∂q
∂p0

≈ 0;
∂p
∂p0

≈ 0 (16)
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15 together with eq 16 shows that this small momentum
change has virtually no effect on pf or qf. The real OC-
guided trajectory is then necessarily almost the complex
solution, which is thus nearly real.

4. Conclusion
In this Account, we have emphasized the off-center
guiding approach to semiclassical Gaussian wave packet
dynamics (off-center thawed Gaussian approximation or
OC-TGA). To develop the method and compare, we have
derived and motivated several other strategies for semi-
classical Gaussian propagation. The OC-TGA probably
holds the record for being able to handle strong chaos
and many (thousands of) branches to the classically
contributing dynamics. Along with the nearly real ap-
proach to the CSSA, it deserves consideration as a method
of choice for handling semiclassical approximations to
nonlinear dynamical systems for long times.
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